Evaluate:
\frac{8\times10^{-5}}{\sqrt{1.6\times10^7}} \times(1.2\times10^3)^2
A. 2.88 × 10^{-3}
B. 2.88 × 10^{-2}
C. 2.88 × 10^{-5}
D. 2.88 × 10^4
E. 2.88 × 10^{-1}
Evaluate:
\frac{8\times10^{-5}}{\sqrt{1.6\times10^7}} \times(1.2\times10^3)^2
A. 2.88 × 10^{-3}
B. 2.88 × 10^{-2}
C. 2.88 × 10^{-5}
D. 2.88 × 10^4
E. 2.88 × 10^{-1}
\frac{8 \cdot 10^{-5}}{\sqrt{1.6 \cdot 10^7}}\cdot (1.2 \cdot 10^3)^2
The most efficient way to solve this is to divide it into 3 parts.
part:
8 \cdot 10^{-5}
part:
\sqrt{1.6 \cdot 10^7} = \sqrt{\frac{16}{10} \cdot 10^7} = \sqrt{16 \cdot 10^{-1} \cdot 10^7} = \sqrt{16}\cdot \sqrt {10^6}
=4 \cdot (10^6)^\frac{1}{2} =4 \cdot 10^{6\frac{1}{2} }=4 \cdot 10^{\frac{6}{2} }=4 \cdot 10^3
part:
(1.2 \cdot 10^3)^2 = (\frac{12}{10}\cdot 10^3)^2=(12\cdot 10^{-1}\cdot 10^3)^2 = (12\cdot 10^{3-1})^2
= (12\cdot 10^2)^2 = 12^2 \cdot (10^2)^2 = 144 \cdot 10^{2\cdot 2} = 144 \cdot 10^4
Putting all the parts together:
\frac{8 \cdot 10^{-5}}{4 \cdot 10^3 }\cdot 144 \cdot 10^4 = 2 \cdot 10^{-5}\cdot ( 10^3)^{-1} \cdot 144 \cdot 10^4 = 288 \cdot 10^{-5 -3 +4}
= 288\cdot 10^{-4} = 2.88 \cdot 10^{2}\cdot 10^{-4} = 2.88 \cdot 10^{2-4} = 2.88 \cdot 10^{-2}.
Which gives us the final answer (B) 2.88 \cdot 10^{-2}